
An incrementalformal approachto real-timesystems

Ana FérnandezVilas and JośeJ. PazosArias 1

Ár eade Ingenierı́a Telemática. University of Vigo. 36200Vigo. Spain
tel: +34986812186,fax: +34986812116.�

avilas, jose� @ait.uvigo.es

ABSTRACT

A real-timesystemis onein which thecorrectnessof thesystemdependsnot only on the logical results,but alsoon the timeat which
resultsare produced.Formal approach to real-timesystemshasbeentackledextendinga large amountof untimedformalismsstudiedat
length. Oncemajor timedproblemshavebeencompletelyor partially resolved,our aim is slightly different. In order to improvesoftware
quality, our intendis to merge two differentnature solutions: the formalizationof thesoftware process;anda processapproach which is
bothiterativeandincrementalover thewholelife cycle. In this waywecombinethecorrectnessof formal methods,andthesuitability of a
life cyclethat followstheuserrequirementsandsplitscomplexity.

1 Intr oduction

A real-timesystemis onein which the correctnessof the
systemdependsnot only on the logical results,but alsoon
the time at which resultsareproduced.In this field, there
can not be any doubt that real-timeformal methodshave
beendelayedwith respectto conventionalones,goingback
few years.Oncematurity in formalizationof untimedsys-
temshasbeenreached,formal approachto real-timesys-
temshasbeentackledextendinga largeamountof formal-
ismsstudiedat length.

Shortly after theoreticalresultsappeared,verification
tools weredevelopedmainly in academicarea(KRONOS
followedby UPPAAL, RT-SPINandTimed-COSPAN). All
thesetoolsarebasedon timedautomatato alargeextent,al-
thoughthey differ in theirpropertyspecificationlanguages.
Real casestudies(like the onestackledby UPPAAL and
KRONOS)havehighlightedtimedmodelsandmethodsare
alreadyripe for practitioners.

Nevertheless,thesetimedtheoreticalfoundationscome
up againstindustryreluctanceaboutformal methodsadop-
tion in thesoftwareprocess;technology-transferproblems,
which have beendiscoveredin conventionaluntimedsys-
tems,appearonceagain. We believe onekey factoris un-
suitableuser-orientationof mostacademicFDT’s (Formal
DescriptionTechnique)tools. It is urgentto improvehelper
mechanismsto make tools easierto use to professionals
without strongtheoreticalbackground.Apart from aided
issues,integratedenvironmentsarealsoessentialto bring
real-timeformal methodscloserto theuser. It is advisable
to includefacilities rangingfrom staticanalysis,basedon
formalnotationsandschedulabilitytheory, to dynamicana-
lysis basedon testingor run-timemonitoring[1, 2].

With respectto softwareprocess,requirementsfor large
andcomplex systemsarealwaysproblematicinitially and
they evolve continuallythroughoutthelife cycle. So,soft-
wareprocessmodelshaveto berobustandflexible in order

to accommodatetheinevitableandoftencontinuousstream
of changes.Whatis more,in earlyphasesdesignerhasnot
a deepknowledgeof the system,and in any case,maybe
formal complexity is excessive for one-stepdesign.Tradi-
tional cascadelife cyclesareunlikely suitable. Therefore,
formal methodsshould be adaptedto supportevolution,
outsidetheir traditionalroleof verifying thatamodelmeets
certainfixedrequirements.See[3] for real-timescenarios
wheresystemevolutionsupportis needed.

Oncemajor timed problemshave beencompletelyor
partially resolved,our aim is slightly different. In orderto
improvesoftwarequality, our intendis to mergetwo differ-
entnaturesolutions:theformalization of thesoftwarepro-
cess(gainingthe advantagesof FDT’s); anda processap-
proachwhich is both iterati ve and incremental (fitting in
with requirementschange)overthewholelife cycle. In this
waywecombinethecorrectnessof formalmethods,andthe
suitabilityof a life cycle thatfollowsuserrequirementsand
splitscomplexity. This doctoralproposalis a timedexten-
sionof previousworkstackledby my researchgroupin the
field of untimedreactive anddistributedsystems[4, 5, 6].
Main contributionsin theseworksarethefollowing: caus-
ation in temporallogic; incompletespecifications;sugges-
tions computation;and translationfrom logic into FSM’s
(Finite StateMachine)andfrom FSM’s into LOTOS[7].

Theoreticalworksrelatedto formaldesignandanalysis
of real-timesystems(summarizedin section2) arethe re-
quiredelementsto definea formal modelof softwarepro-
cess. But, given that the life cycle will be iterative and
incremental,to reacha sounddesign,relatingsubsequent
cycles to eachother and recordingdesigninformation in
previouscyclesis needed.In every cycle, thesystemcap-
ability to satisfyuserrequirementsdependsonpreviousre-
quirementsenforcedin the system.Oncea formal design
is obtained,it is a goodideato usethis designfor several
kindsof analysis(formal,andeveninformal).

1Advisorof thedoctoralwork introduced

Finally, althoughtheprimaryaim of my doctoralwork
is not focusedon efficiency issuesrelatedto formal ana-
lysis,wetry to depictthestateof theart in thisfield (mainly
by minimization).

2 Stateof the art

In thissectionwesummarizetheoreticalresultsin real-time
models,logics andmethods.In order to formalizea soft-
wareprocess,integratingthe bestpracticesin the stateof
theart is needed.

Oneprimary questionis to selecta realisticmodelfor
thetime. Althoughtherehasbeena long andstill unsettled
debateconcerningtheselectionof adiscreteor adensetime
model,thereis abroadconsensus[8, 9, 10] thatdensemod-
els are more expressive andsuitablefor compositionand
refinement.Giventhatalgorithmsover dense-timemodels
areincreasinglyefficienteveryday, weconsiderdensetime
modelsaremorecorrectandnaturalsince,moreover, there
areapplicationareas,like hybrid systems,wheretime can
not bediscretizedfineenough.

Timed formalismsembraceseveral approacheswhich
differ on their methods,aims,andabstraction-levels: tem-
poral logics, first order logics, statemachines,processal-
gebras,synchronouslanguages,etc (see [11] for a sur-
vey). For adualformalization(property+ model)asours,a
model,a requirementslanguageandseveralanalysismeth-
odsareneeded.

In order to include the timed componentof a system,
a model is neededwhich, in additionto reactive behavior,
expressesthe usual behaviors in real-time systems,like
propagationdelays,timers,deadlines,responsetimes,etc.
Thesereal-timeconstraintshave beenincorporatedin un-
timedstatemodelsby meansof two majormechanisms:as-
sociatinglowerandupperboundswith transitions,or defin-
ing afinite numberof clockswhichproceedatthesamerate
andmeasurethe elapsedtime sincethey werereset(timed
automata[12]). Thelatermechanismhasbeenrevealedas
moreflexible in real-timemodeling.

Meanwhiletimed automata(andits differentversions)
canbe consideredthe standardformal statemodel, in the
propertyapproach,the situationseemsnot to be so clear:
a variety of logics have beenappliedto the requirements
specification[13]. Given thatonly branchingreal-timelo-
gics canbe automaticallyverified (without relaxingpunc-
tuality [14]), we definea branchingreal-timelogic which,
moreover, is causal(closer to the user)and many-valued
(supportinganincrementaldesign).

As far asanalysisis concerned,formal techniquesas-
suming densetime have their early origin in [15]. In
this work, Alur et al reachto a modelcheckingalgorithm
for timed automatawith real-valuedclocks and the logic
TCTL. Themainideabehindthisalgorithmis theconstruc-
tion of an abstractfinite state-space,called region graph,

from thedensestatespaceof a timedautomata.Sinceob-
tainingaaccuratefinite modelof thesystemwasrevealedas
possible,many works have extendedthis solutionto other
kindsof analysis(strategy computation,schedulabilityana-
lysis,synthesis).

Unfortunately, the numberof statesin such abstract
spaceis exponentialwith elementsin themodelandthespe-
cification.Hence,algorithmsbasedonexplicit construction
of the region graphare unlikely to perform efficiently in
practice.

In orderto overcomethe state-explosionproblem,dif-
ferent techniqueshave beenapplied: discreterepresent-
atives, symbolic computation,and minimization by time-
abstractions.To sumup, discretizationis not alwayscor-
rect; andsymbolicanalysisby meansof characteristicfor-
mulaeis notcloseto theuser. For analysismethodsasauto-
matic as possible,minimization seemsto us a promising
solution. In [16], it is showed a catalogof the main time
abstractions(simulationsand bisimulations)and the kind
of propertiesthey preserve.

3 Formal basis

In this sectionit is outlinedthe formal basiswe incorpor-
ate in the modelof softwareprocess.We take a dual ap-
proachto designwhich hasbeenmassively adoptedboth
in untimedandtimed formal methodologies(for instance,
KRONOS). Dual specificationjoins advantagesof two
broadlyusedstyles:model-andproperty-oriented.

Property oriented: We define a real-time temporal
logic for the requirementsspecification(SCTL-T, section
3.2). An iterativeandincrementalapproachentailsuserin-
formationwhich is bothincompleteandinconsistent,since
theusergainsknowledgeaboutthesystemthroughthesoft-
wareprocess.For this aim, many-valuedlogics arean at-
tractivesolution.

Model oriented: We usea state-transitionformalism
for the designmodel of the system,sinceits operational
style turnsout to bemoresuitablethanprocessalgebrasin
the early phasesof the life cycle whenthe structuresense
is slight or it doesnot exist at all. We definea timedmodel
(MUS-T, section3.1),basedon timedautomata,which re-
cords designinformation generatedall over the process.
However, giventhatrefinementsareusuallycarriedoutover
constructive specifications,we proposea semi-automatic
translationfrom MUS-T into E-LOTOS[17].

Sincepart of the formal processmeansdecidingwhat
functionalitiesto beimplementedin software andwhich in
hardware, astate-transitionmodelallowsusto easilytrans-
late into hardwareand, by meansof E-LOTOS into soft-
ware.

3.1 MUS-T

For modelingreal-timesystemswe defineMUS-T graphs
(TimedModel of UnspecifiedStates),which arebasedon
timed automatatheory. Whereasatomicpropositionsin a
control stateof a timedautomataareassertionsbeingtrue
or false,in an incrementalapproach,thingswill be trueor
falseat the end (in final development),but in a transient
processcycle thingscanbetrue,canbefalse,or canbenon
specified.

For this,weproposeamodelwith densebranching-time
semanticssimilar to the timed graphin [15] , but event-
driven.In orderto supportincompletenessandconsistency-
checking,timedevents(event+ timeguard)in astateof the
modelcanbe characterizedaspossible,forbiddenor non-
specified(unspecified).Transitionsin themodelarelinked
only to possibleandunspecifiedeventsin a controlstate.

That is, for eachcontrol stateandfor eachevent iden-
tified in the system, time domain can be split in three
specification-stagezones: possiblezone, forbidden zone
andunspecifiedzone.All legal runsof thesystemconform
to thefollowing rules:

➤ If current time valuation belongsto the forbidden
zone,theeventcannotbetakenin this timedstate.

➤ If currenttimevaluationbelongsto thepossiblezone,
theeventcanbetakenin this timedstate.

➤ If currenttime valuationbelongsto the unspecified
zone,this event canbe characterizedaspossibleor
forbiddenlaterin thesoftwareprocess.

In contrastto untimedmodels,timed onesdefinetwo
typesof possibleevolutions from a state: discretetrans-
itions and time transitions. Above characterizationof
eventsin a stateof themodelallows us to specifydiscrete
progressin thesystemincrementally. However, in orderto
cover time evolution aswell, invariants(predicatescharac-
terizingstateswheretime cancontinuouslyprogress)have
to be formalizedin a similar way. For this, eachcontrol
statein the systemis linked to a pair of invariants: evol-
ution invariantandstopinvariant. The evolution invariant
determinethe setof valuationsthat allow the stateto ad-
vancetime, similarly, the stopinvariantdeterminesthe set
of valuationsmaking the systemto take a discretetrans-
ition, or, if it doesnot exist, timelock. Time valuations
which are includedin neitherof the above belongto the
unspecifiedinvariant,andthey canevolveto thestopor the
evolution invariant.

3.2 SCTL-T

Themajormotivationbehindintroducingacausallogic into
requirementsspecificationis to fill the gap betweenthe
naturallanguage,in which usersexpressthemselves,and
a formal specificationof requirements.Causationrespect
threefundamentalprinciplesof requirementsengineering:
requirementsspecificationis clearto thecustomers,clearto

thedevelopersand,by meansof formal causation,it canbe
formally analyzed.

With this principle we definea causaltemporallogic
calledSCTL-T(TimedSimpleCausalTemporalLogic). It
is a branchingreal-timelogic with densetime semantics,
that fits within the explicit clock real-timelogics. To ex-
pressthetimedconstraintsweusespecificationclocksfixed
by freezequantification,and time predicatesover these
clocks.

Requirementsin SCTL-T follow thispattern:

Premise ��� Consequence

This genericcausalrequirementestablishesa causing
condition(premise);a temporaloperatorwhich determines
theapplicabilityof thecause(���); andaconditionwhich
is theeffect (consequence).

Apart from causation,SCTL-T is many-valued. The
startingpoint of many-valuedlogicsis thatnot “everything
is trueor false”(principleof bivalence).In general,many-
valuedlogicsaresuitableto dealwith bothincompleteand
inconsistentinformationobtainedby therequirementscap-
ture,unfortunately, researchin this areais deficientin the-
oretical resultsand, especially, in practical tools. Logic
SCTL-T valuesoutsidebivalenceprinciple are originated
from unspecificationin themodel,anddifferencesbetween
implicationandcausality. Takingthisinto account,wehave
definedthesix-valuesatisfactionrelationof a SCTL-T for-
mulaovera timedstateof a MUS-T graph.

Finally, althougha causallogic capturesthe human
senseof expressingrequirements,the formal specification
of a requirementin this logic may be difficult for users
without mathematicalfoundations. We offer a graphical
counterpartto the SCTL-T syntaxwhich allows usersto
constructSCTL-T graphsfrom conditionsover a stateof
the system,causaltemporaloperatorsrelatingthem(char-
acterizingaconditionasapremiseor asaconsequence)and
timing constraintsdemandedbetweenwhatever two state
conditions.

4 The wholeSoftwareProcess:intr o-
ducing formality

Nowadaysiterativeandincrementaldevelopmentis acom-
monpracticein softwareengineering.In spiteof its proven
reductionin time to market, integrationwith formal meth-
odsareais still immature. Researchhasnot furnishedthe
formal basisand methodologiesenablingthis paradigm.
Toward this field the main interestof my researchgroup
is directed,andmy particularinterestrelatedto real time
systemsaswell.

In this sectionwe outline the whole proposedmodel
for the software process. This model definesa software
processwhich is both iterative andincremental;moreover,

it relies on formal basis(SCTL-T andMUS-T). Unfortu-
nately, formal basisis not enough. A systemis correct
when it runsas it is desired,but formal methodscannot
demonstratecorrectnessin this sense,sincethey arebased
onformalmodelswhichcouldbeunsuitableor incomplete;
and,moreover, mistakesin thedifferencebetweenuserex-
pectationsand establishedrequirementscan appear. Al-
thoughformalmethodsallow constructingprecisespecific-
ationsof thetargetsystemandrequirements,it is necessary
to usesupplementaryinformal techniqueslike prototyping,
simulationandtesting.

On the one hand, an incrementaland iterative life
cycle,maybeprototype-oriented(explorative),enforcesad-
ditional mechanisms:formal synchronizationof software
artifacts (models and requirements)betweensubsequent
cycles (iterative); support for incompletemodels(incre-
mental);checkinginconsistencies(requirements);etc. On
theotherhand,ensuringtechnologytransferenforcesuser-
orientedhelpermechanisms(like formal simulation,sug-
gestiongeneration,mechanismsfor easyrequirementsspe-
cification,etc.);andnon-staticanalysislike prototypetest-
ing.

MUS-T to E-LOTOS

DYNAMIC ANALYSIS:

M
ODELL

IN
G

M
ODEL ANALYSIS

RESULT
S E

VALU
ATIO

N

(Previous Suggestions)
MUS-T components

Model Checking
MUS/SCTL-T

Refine

Requirements

New SCTL-T

Graphic
Specification

Architecture

 and suggestions)

On Fail:
 Formal Simulation
 (Counterexample)

On Sucess:
 Test Generation

On sucess
Only

over prototype:
 User Validation
 Testing

On incosistency:
 Counterexample

 On incompleteness:
 Suggestions

DEVELOPM
ENT

Figure1. Modelof softwareprocess

Themodelof softwareprocessweproposeis showedin
figure1. In every iteration,theuseridentifiesandspecifies
a setof requirementswhich leadto a growth in thesystem
functionality. Theserequirementsareverifiedin thecurrent
model,thatonein thecurrentcycle,in orderto check:if the
systemalreadysatisfiestherequirements;if it is not ableto
provide, in a future designstate,theserequirementsfrom
the currentdesign(inconsistency); or, if the systemdoes
not satisfythe requirements,but it is ableto do it (incom-
pleteness).Thephaseswithin acycleare:

1 Modeling: requirementscapture by means of
SCTL-Tgraphicconstructionwhich is automatically
translatedinto SCTL-T syntax;andchangein MUS-
T model, possibly incorporatingsuggestionsin the
previouscycle.

2 Model Analysis: new SCTL-T requirementsspe-
cifiedin themodelingphaseareverifiedoverMUS-T
componentsof the system. Analysis phase in-
cludesformal verification, as usual in FDT’s, and
evenschedulabilityanalysisdueto real-timenature.
Formal verification is carriedout via model check-
ing of SCTL-T requirementsovercomposedMUS-T
model by computingan abstractgraph. The result
of this verificationprocessis thelevel of satisfaction
of a SCTL-T requirementin a MUS-T graph. This
satisfactionlevel shows,in aqualitativeway, thesys-
temcapabilityto fulfill requirementsin futurecycles,
which dependson the amountof unspecificationin
the systemandin the requirement.If a SCTL-T re-
quirementis not satisfied:

– consistency failure: It cannot besatisfiednow
or in the future. A counterexample(execution
trace)and the list of previous requirementsin
conflict aresupplied.

– completenessfailure: The requirementcanbe
fulfilled in the future. Suggestionsare com-
puted over the abstractgraph, moving some
valuationsfrom theunspecifiedzoneto thepos-
sible or forbiddenones,in order to fulfill new
requirements.This canbe viewed asan incre-
mentalsynthesis.

With respectto schedulabilityanalysis,it is possible
to reduceit to a specificmodelcheckingalgorithm
which computesa samplescenariowhereall tasks
areserved.Onceagain,thetaskscanbeschedulable,
nonschedulable,or incompleteto decideschedulab-
ility .

3 Results Evaluation: This phaseallows the userto
evaluateresultsin theanalysisphase.

– On success:A testsuite is generatedfrom the
formaldesign.

– On fail (inconsistency): Usercansimulatethe
counterexamplein orderto decidewhich of the
conflictingrequirementsareerror-prone.

– On fail (incompleteness):User can simulate
thecurrentmodelwith suppliedsuggestionsin
order to decidewhich suggestionconformsto
wishes.

4 Development: MUS-T/ELOTOStranslation(maybe
architecturedecisions)and prototypeconstruction.
Over the prototype,the usercanvalidatethe imple-
mentedsystemby testing.WeuseE-LOTOSin order
to take advantageof our experiencein this process
algebra.

5 Curr ent stateand research goals

In the currentstateof my doctoralwork, we have defined
theformal basisfor themethodology:MUS-T andSCT-L.
With referenceto theautomaticmechanismsdefinedin the
softwareprocess,theconcretegoalswhichwehavealready
reachedare:

➤ Formalverification:A modelcheckingalgorithmfor
MUS-T andSCTL-T by computationof the region
graph.

➤ Overcoming state-explosion: A minimization al-
gorithmwhich builds theminimal stablepartitionof
aMUS-T graphusingatimeabstractingbisimulation
which preservesSCTL-T formulae.

➤ Formal simulation algorithm: The simulation al-
gorithm makes a reachabilityanalysison the com-
posedsystem.Thepurposeof this analysisasvalid-
ationmechanismis two fold: guaranteeingsanityof
thesystemby detectionof timelocks,deadlocksand
unreachablestateswhich are real or potential (due
to unspecification);andallowing developersto valid-
atesystemrequirements,andto explore alternatives
in order to reachnew requirements(by formal sim-
ulationof thesystem+ suggestions).For the imple-
mentationof thesimulationalgorithmweusea time-
abstractingsimulationwhich preservesreachability.

In orderto concludethiswork,ourimmediategoalsare:
graphicnotationfor SCTL-T, suggestionscomputation,test
generation,anddefinitionof MUS-T into E-LOTOStrans-
lation. In thefollowing paragraphsweoutlinetheprelimin-
ary ideasrelatedto thesegoals.

Graphic notation: As it is known, temporallogic for-
mulaearecomplex to expressandinterpret.This complex-
ity grows in explicit clock temporallogicsdueto theincor-
porationof namedclocksin theformulas,makingthespe-
cificationhardlyintuitive. With theaimof avoidingunread-
ability we intend to definea graphicnotationwhich rep-
resentsSCTL-T requirementsasdirectedgraphsin a way
similar to theonedefinedin [18], but incorporatingcausal
connectives.

Incr emental Synthesis(Suggestions): We conjecture
that the more generalproblemof synthesizinga MUS-T
model from a SCTL-T requirementis undecidable,since
the satisfiability problemis undecidablefor real-time lo-
gicsaslongasthelogic canexpresspunctualityproperties.
As regard incrementalsynthesis,we are consideringtwo
approaches:gametheory and boundedsynthesis. Given
a SCTL-T requirement,in order to provide (if complete-
nessfailure)suggestionsto theuserweareusingtheworks
on real time games(see[19] for its origins). In the game
approach,we searchfor timed strategies which preserve
the possibleand forbiddenelementsin a MUS-T model,
andrestrictsthechoicesof theunspecifiedonessothat the

modelsatisfiesa givenSCTL-T requirement.For this pur-
pose,we intendto designan algorithmas“on the fly” as
possible,like the one recentlyshowed in [20]. Although
theformerseemsto usthemostpromisingsolution,weare
investigatingthe feasibility of applying a boundedmodel
constructionalgorithm similar to the one in [21]. In the
boundedsynthesisapproach,we intend to provide an al-
gorithmwhich, givena SCTL-T requirementanda source
MUS-T model,synthesizes(if possible)a satisfyingtarget
model within given boundson the numberof clocks and
constantsused.

Test generation: At the momentwe prefernot to re-
leaseany commentsof this part of the work sincewe are
still consideringsuitability of different approachesin the
stateof theart.

MUS-T into E-LOTOStranslation: In thispartof the
work weintendto extendtheMUS into LOTOStranslation
in [6] to therealtimeversiondefinedin my doctoralwork.

6 Evaluation and preliminary con-
clusions

The main goal of this doctoral proposalis to define the
formalbasisandtechniquesneededto supportiterativeand
incrementaldevelopmentfor real time systems.This de-
velopmentparadigmhasbeenmassively incorporatedwith
low-level formality in real time tools by vendorslike Ra-
tional (RT Rational Rose [22]) , Verilog (ObjectGeode
[23]), andIAR (IAR VisualState[24]). All of theminclude
formality in designby meansof FSM’s, however, formal
analysisis moreexceptionalandformalizationin require-
mentsis absentat all. It is neededmoreresearcheffort in
orderto reachthe sametechnologytransfersuccessin the
lasttwo issues.

Theevaluationof thecontributionof my PhDthesishas
to becarriedout in two phases:

➤ Soundness: Evaluation of the correctnessof the
methodology.

➤ Measurementof the contribution: It is mandatory
to evaluatethe methodologywith the commoncase
studiestackledby academictools in this area.How-
ever, this staticevaluation(withoutprocessperspect-
ive) doesnot provide the real measurementof the
valueof my work sincethe maincontribution is the
formalizationof the wholeprocess.It would be ad-
visable to addressevaluation by meansof success
storiesreportedby vendors. In this kind of eval-
uation, it is important to take into accountthat we
areimplementingthe methodologyasa benchmark,
andthereforewecancomeupagainstscaleproblems
whenit comesto dealwith thesesuccessstories.

To conclude,we believe that higher-level formaliza-
tion of softwareengineeringin practiceshouldinvolve ap-
proachingformal methodsto currenttrendsin softwarein-
dustry. At this point, we believe incrementalapproachis a
major milestone. However, therecould be somecriticism
about my doctoral proposalconcernedto object orienta-
tion (OO). As well as formalizing an iterative and incre-
mentalprocessintendsto avoid industry reluctanceabout
formal methods,future directionsin order to achieve this
goalshouldinvestmoreeffort in OOparadigm.In thisfield
wemerelycite theworksthatincludeOOin realtime logic
specificationscarriedout in TRIO+ definition[25].

References

[1] JohnA. Stankovic. RealTime andembeddedsystems.
ACM ComputingSurveys, 28(1),1996.

[2] ConstanceHeitmeyer. On the Need for Practical
Formal Methods. In 5th InternationalSymposiumon
Formal Techniquesin Real-Time and Real-Time Fault
Tolerant Systems(FTRTFT98), number1468 in LN
CS,pages18–26,Lyngby, Denmark,september1998.

[3] JohnA. Stankovic. Strategic Directionsin Real-Time
and EmbeddedSystems. ACM ComputingSurveys,
28(4),1996.

[4] JoseJ. PazosArias. Transformacíon y verificacíon
con LOTOS. PhD thesis,Departamentode Ingenieŕıa
de SistemasTeleḿaticos- UniversidadPolitécnicade
Madrid,1995.

[5] Alberto Gil Solla. Disẽno y verificacíon de sis-
temasdistribuidosmediantela aplicación combinada
de métodosformales. PhD thesis,Departamentode
Tecnoloǵıa de las Comunicaciones- University of
Vigo, 1999.

[6] Jorge Garćıa Duque. Especificacíon, verificacíon y
mantenimeintode requisitosfuncionalescon técnicas
de descripcíon formal. PhD thesis, Departamento
de Tecnoloǵıa de las Comunicaciones- University of
Vigo, 2000.

[7] ISO. Information ProcessingSystems- Open Sys-
temsInterconnection- LOTOS- A Formal Description
Tecnhiquebasedon the Temporal Ordering of Obser-
vationalBehaviour. ISO/IEC/8807,Geneva,1989.

[8] Rajeev Alur. Techniquesfor AutomaticVerificationof
Real-Time Systems. PhD thesis,Departmentof Com-
puterScience,StanfordUniversity, 1991.

[9] A. Gollu, A. Puri, and Varaiya P. Discretizationof
TimedAutomata.In Proc.33rd CDC, Orlando,1994.

[10] E. Asarin,O. Maler, andA. Pnueli.OnDiscretization
of Delaysin TimedAutomataandDigital Circuits. In
Concur’98, number1466in LNCS.Springer, 1998.

[11] JonathanS.Ostroff. FormalMethodsfor theSpecific-
ationandDesignof Real-TimeSafetyCritical Systems.
Journalof SystemsandSoftware, 18(1),1992.

[12] Rajeev Alur andDavid Dill. A Theoryof TimedAuto-
mata.TheoreticalComputerScience, 126(2):183–236,
1994.

[13] Rajeev Alur andThomasA. Henzinger. Logics and
Modelsof RealTime: A Survey. In RealTime: Theory
in Practice, number600in LectureNotesin Computer
Science.SpringerVerlag,1992.

[14] Rajeev Alur andThomasA. Henzinger. Real-timeLo-
gics:Complexity andExpressiveness.Informationand
Computation, 104(1),1993.

[15] R. Alur, C. Courcoubetis,and D. Dill. Model-
checkingin DenseReal-Time. InformationandCom-
putation, 104(1),1993.

[16] Stavros Tripakis. L‘AnalyseFormelle desSyst̀emes
Temporis̀esenPratique. PhDthesis,UniversiteJoseph
Fourier, Grenoble,1998.

[17] ISO/IECJTC1/SC21/WG7.Revisedworking draft on
enhancementsto LOTOS(v4). Technicalreport,1998.

[18] H. Ben-Abdallahand I. Lee. A Graphical Lan-
guagefor Specifyingand Analyzing Real-Time Sys-
tems.Real-timeEngineeringSystems, 5(4),1998.

[19] O. Maler, A. Pnueli,andJ.Sifakis. On theSynthesis
of DiscreteControllersfor Timed Systems. In E.W.
Mayr andC. Puech,editors,STACS’95, number900in
LNCS,pages229–242.Springer, 1995.

[20] S.TripakisandK. Altisen. On-the-flycontrollersyn-
thesisfor discreteandtimed systems. In World Con-
gresson FormalMethods,FM’99, 1999.

[21] FrancoisLaroussinieandKim G.Larsen.FromTimed
Automatato Logic – andBack. TechnicalReportRS-
95-2, BRICS.Departmentof ComputerScience,Uni-
versityof Aarhus,january1995.

[22] GarthGullekson.Designingfor Concurrency andDis-
tribution with RationalRoseRealTime. White paper,
RationalCorporation,2000.

[23] Philippe Leblanc. The ObjectGEODEEngineering
Process.Whitepaper, VERILOG, february1998.

[24] IAR Systems.IAR visualSTATE ConceptGuide, oc-
tober1999.

[25] A. MorzentiandP. SanPietro.Object-OrientedLogic
Specificationsof TimeCritical Systems.ACM TOSEM
- Transactionson Software EngineeringandMethodo-
logies, 3(1):56–98,january1994.

